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This paper presents the integration of ultrasound technology and the KNN algorithm to classify the flow regimes 
in bubble columns. An ultrasonic velocity profiler is employed to obtain the standard deviation of bubble velocity 
distributed in the column. The characteristic of echo signal influenced by each flow regime is collected. Both data 
and three flow regimes known were used to make the KNN model for the classification. The circular-shaped tank, 
including a bubble generator and gas hold-up monitoring, was utilized as the experimental apparatus. The flow 
regime of the experimental fluid is found. The classification with the weighted nearest neighbors method was 
demonstrated. The accuracy of the classification under acceptable trend.    
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1. Introduction  
Bubble columns [1] are an important class of multiphase 
reactors that are used widely in several industries. In order 
to operate the bubble column to high efficiency and in 
accord with the production requirement, the flow regime 
in the column is crucial to be operated at the correct region.  
For example, in the bioreactors, the reactor is operated at 
low superficial gas velocities for a highly efficient process. 
On the contrary, in an FT – synthesis reactor, it is executed 
at high superficial gas velocity to enhance efficient heat 
and mass transfer. 
A Bubbly flow regime has almost uniform bubble size 
distribution and less bubble-bubble interaction. This 
phenomenon happens at a low superficial gas velocity. A 
churn turbulent flow regime occurs when the gas is applied 
at a higher superficial velocity. Width range of bubble size 
distribution, bubble coalescence, and high liquid phase 
turbulence are observed obviously. Between both regions, 
the transition flow regime is found. Slug flow is not 
considered in this research. It has a large bubble size 
covering the internal length scales of the column diameter, 
generally not seen in bubble columns, especially in large 
columns.  
As the above explanation, the flow regime should be 
identified in real-time. Therefore, the measurement 
technique to identify the flow regime is needed.  
An optical sensor was applied [2]. It works with the 
machine learning algorithm to classify the two-phase flow 
regime. This technique contacts the flow intrusively, 
which reduces the sensor lifetime. Moreover, if the fluid in 
the column is in harsh conditions or the bubble column is 
an opaque vessel with no optical access, the technique is 
difficult to operate. Hence, a measurement technique that 
works non-intrusively and can operate in the opaque 

condition is required.  
This research presents the combination of ultrasonic 
techniques and machine learning to identify flow regimes 
in a bubble column.  
The ultrasonic velocity profiler (UVP) is an ultrasound-
based measurement technique to obtain velocity 
distribution in liquid flows with high spatial-temporal 
resolution [3]. The ultrasonic wave is able to transmit 
through various materials without the requirement of 
transparency. This method's measurement works non-
intrusively and is ably conducted in a non-transparency 
fluid. In the UVP, an ultrasonic pulse is emitted into the 
liquid by the transducer that works in transmission mode. 
The same transducer operating in reception mode derives 
the echo signal reflected from the moving reflector 
dispersed in the liquid. As the repetition of ultrasonic pulse 
emission, the echo signals are sequentially derived 
according to the repetition of pulse emission, and the 
Doppler signal affected by moving particle velocity can be 
extracted from the echo signals under pulse repetition. The 
Doppler frequency fD(i) is associated with particle velocity 
(i means the particle position). Hence, the velocity of the 
moving particle at position V(i) can be calculated as 

𝑉𝑉(𝑖𝑖) =
𝑐𝑐𝑓𝑓𝐷𝐷(𝑖𝑖)

2𝑓𝑓0
 (1) 

Where c is the speed of sound of the fluid, f0 is the center 
frequency of the ultrasonic pulse.  
In the two-phase flow, the UVP measurement was applied 
in many works, whether the both-phase (bubble and liquid) 
velocity measurement [4] or only measure bubble velocity 
[5], where the bubble velocity measurement concept is 
utilized in our work. 
Ultrasonic measurement data on the two-phase flow in the 

67



bubble column derived are inputted to the machine 
learning algorithm for model development of the flow 
regime identification. These parameters contain valuable 
information on the operating flow regime of two-phase 
flow in the bubble column.  
K-nearest neighbors algorithm (KNN) [6] is a machine 
learning methodology in the type of supervised 
classification algorithm applied in this research. Some of 
the measurement data is used to test the performance of the 
model in identifying the flow regime.  

2. Methodology  
2.1 k-nearest neighbors algorithm 
The k-nearest neighbors algorithm (KNN) is a supervised 
learning classifier that uses proximity to make 
classifications or predictions about the grouping of an 
individual data point, as shown in figure 1. This technique 
is non-parametric. The KNN model is made by training 
data, which consists of attributes or inputs (xi) and 
categories or outputs (yi). Then, the k value in the KNN 
algorithm defines how much neighbor data is checked to 
determine the classification of a specific query point.  
In order to determine which data points are closest to a 
given query point, the distance between the query point 
and the other data points (training data) needs to be 
calculated. The weighted nearest neighbors work as the 
decision-making method for classification in this research. 
For the KNN to classify the flow regime in the two-phase 
flow in this research, two attributes are used to make the 
model, which are the standard deviation of bubble velocity 
and the characteristic of the echo signal, respectively. The 
categories of classification are based on three flow regimes 
occurring in two-phase flow: bubbly, transition, and churn 
turbulent regime. 

2.2 Standard deviation of Bubble velocity  
Based on the Eq.1., the velocity profile of the particle can 
be obtained. Hence, if the ultrasonic reflector is a bubble, 

 
Figure 1: k-nearest neighbors algorithm. 

 
Figure 2: Echo signal of two-phase air-water flow. 

the reflection index is high, and a huge echo amplitude can 
be observed when the echo signal is reflected from the 
bubble, as illustrated in figure 2. The autocorrelation 
method is used as the velocity estimator. The bubble 
velocity data is separated by putting the threshold value on 
the autocorrelation function amplitude. Then, the velocity 
of a bubble is able to be extracted. The bubble velocity 
profile is obtained when a massive number of the bubbles 
are distributed available to cover a two-phase flow area. 
Then, the standard deviation of bubble velocity in the 
interested region is determined from high amount number 
of velocity profiles. Lastly, it is utilized as the first attribute 
for the flow regimes classification model of the KNN 
algorithm.   

2.2 Characteristics of echo signal 
The effect of the bubble dispersed in the two-phase flow 
on the ultrasonic measurement is illustrated via the 
characteristic of the echo signal. The characteristic can be 
used to be the second attribute of the flow regimes 
classification model. Figure 3. shows the echo 
characteristic influenced by the bubbly and churn-
turbulent flow at the interested region. High amplitude 
level dense in the signal obtained from a churn-turbulent 
flow. It is also observed in the bubbly region at the zone 
close to the transition regime. The density of the high echo 
amplitude is enhanced mainly as the increasing of bubble 
number. In this research, the slope value of the 
autocorrelation function of the echo signal at low values of 
time shifts is utilized as a characteristic of the echo signal. 
The slope of the function varies increasingly following the 
massive density of high amplitude echo. The bubble size 
affects the magnitude of echo amplitude. However, it has 
less influence on the slope value due to the amplitude 
threshold applied, except the bubble size is bigger than the 
ultrasonic beam width, which blocks the signal penetration 
into the fluid behind the bubble and makes disability of the 
measurement respectively. The schematic of signal 
processing is shown in figure 4. The autocorrelation 
function rxx(k) in the processing is expressed as follows.    

𝑟𝑟𝑥𝑥𝑥𝑥(𝑘𝑘) =  �𝑥𝑥(𝑛𝑛)𝑥𝑥(𝑛𝑛 + 𝑘𝑘)
𝑁𝑁−1

𝑛𝑛=0

 (2) 

“Where k is the time lag and x(n) is the time domain signal. 

  
(a) (b) 

Figure 3: Echo signal in two-phase flow (a) bubbly regime and 
(b) churn-turbulent regime. 
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(a) 

 
(b) 

Figure 4: Slope value of the autocorrelation function of the 
echo signal at low values of time shifts (a) bubbly regime and 
(b) churn-turbulent regime. 

3. Experimental setup 
Figure 5 illustrates the experimental apparatus and 
measurement system. The circular tank was used as a 
bubble column. The internal diameter of the tank was 80 
mm. The wall thickness was 2 mm. The bubble generator 
was put at the bottom of the tank. The bubble generated 
was supplied by the air compressor and controlled by the 
airflow controller. There are three types of liquid utilized 
in the experiment: 1) tap water, 2) tap water mixed with 
glycerin 5 %v/v, and 3) tap water mixed with glycerin 
20 %v/v. The pressure meter was installed at positions A 
and B to measure the fluid pressure in order to calculate 
the gas hold-up in the bubble column.  
The UVP system comprises an ultrasonic transducer, 
Pulser/receiver, a Digitizer, and a Computer. The 
LabVIEW version 2021 was used as a measurement 
processing tool. The equipment specification and 
parameter configuration is shown in Table 1 and 2, 
respectively. 

 
Figure 5: Experimental apparatus and measurement system. 

Table 1: UVP measurement system specification. 

Equipment Description 
Transducer 4 MHz, Model: TX-4-5-8, MFG: Met-

Flow, Lausanne, Switzerland 
Pulser/receiver Model: PUL-2, MFG: Honda 

Electronics, Aichi, Japan 
Digitizer Model: NI USB 5133,MFG: National 

Instrument, Texas, USA 
Computer Model: ThinkPad, MFG: Lenovo, 

Beijing, China 

Table 2: UVP Parameter configuration. 

Parameter Value 
Center frequency (f0) 4MHz 
Number of cycles 4 
Emission voltage 140 Vp-p 

Receiving gain 30 dB 
Pulse repetition frequency (fPRF) 8 kHz 
Number of repetitions (NREP)  64 

 

4. Result and discussion  
4.1 Experimental data of gas hold-up and flow 
regimes 
Figure 6 represents the graph that shows the relation 
between the gas hold-up (ɛ) and superficial gas velocity 
(Ug). The experimental data to define the relation was 
obtained from the conducting experiment in the apparatus 
explained in the previous section. The tap water, tap water 
mixed with glycerin 5 %v/v, and tap water mixed with 
glycerin 20 %v/v were the working liquid in the 
experiment. The flow regimes were mapped on the graph, 
which was the essential data for making the KNN 
classification model.  

4.2 KNN classification model and accuracy 
evaluation 
Figure 7 illustrates the KNN model for flow regime 
classification. The standard deviation of bubble velocity 
and the slope of the autocorrelation function of the echo 
signal worked as the model attributes. There are three flow 
regime categories in the model: bubbly, transition, and 
churn turbulence. One hundred sixty-eight training data 
was inputted to make the model. The training data is the 
information that the categories accorded to attributes were 
known.  

4.3 Testing result and accuracy evaluation 
In the last step, the 28-testing data set that the known flow 
regime was used to confirm the accuracy of the model. All 
data was collected from the water, which is a working 
liquid that was injected by the air with a superficial gas 
velocity between 1.3 and 9.9 cm/s. The data cover three 
flow regimes. The k = 3 was set for the evaluation. The 
testing result is shown in Table 3. The model accuracy in 
the testing is 96.4%. Figure 8 illustrates the tested result on 
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the KNN model. The result in transition regime is used in 
this example.  

 
(a) 

 
(b) 

 
(c) 

Figure 6: Relation between the gas hold-up and superficial gas 
velocity (Ug), (a) tap water, (b) tap water mixed with glycerin 
5 %v/v, and (c) tap water mixed with glycerin 20 %v/v. 

 

 
Figure 7: The KNN model for flow regime classification. 

 Table 3: Testing result  

 

 
Figure 8: The KNN model for flow regime classification. 

5. Summary 
The integration of the UVP technique and the KNN 
algorithm to identify the flow regimes in bubble columns 
was proposed. The standard deviation of bubble velocity 
distributed in the column and the characteristic of the echo 
signal influenced by each flow regime were collected by 
the UVP. The experiment was conducted in a circular 
shaped tank that bubble generated, and gas hold-up was 
monitored. The KNN model for the flow regime 
classification was made. The weighted nearest neighbors 
method was used to make the decision for classifying the 
flow regime. The accuracy of the classification was higher 
than 95%.  
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No. Flow 
regime 

Prediction No. Flow 
regime 

Prediction 

1 bubbly Correct 15 Trans Correct 
2 bubbly Correct 16 Trans Correct 
3 bubbly Correct 17 Trans Correct 
4 bubbly Correct 18 Trans Correct 
5 bubbly Correct 19 Trans Wrong 
6 bubbly Correct 20 Churn Correct 
7 bubbly Correct 21 Churn Correct 
8 bubbly Correct 22 Churn Correct 
9 bubbly Correct 23 Churn Correct 
10 bubbly Correct 24 Churn Correct 
11 bubbly Correct 25 Churn Correct 
12 bubbly Correct 26 Churn Correct 
13 bubbly Correct 27 Churn Correct 
14 Trans Correct 28 Churn Correct 
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