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Morphodynamics of submarine channel inception
revealed by new experimental approach
Jan de Leeuw1, Joris T. Eggenhuisen1 & Matthieu J.B. Cartigny2

Submarine channels are ubiquitous on the seafloor and their inception and evolution is a

result of dynamic interaction between turbidity currents and the evolving seafloor. However,

the morphodynamic links between channel inception and flow dynamics have not yet been

monitored in experiments and only in one instance on the modern seafloor. Previous

experimental flows did not show channel inception, because flow conditions were not

appropriately scaled to sustain suspended sediment transport. Here we introduce and apply

new scaling constraints for similarity between natural and experimental turbidity currents.

The scaled currents initiate a leveed channel from an initially featureless slope.

Channelization commences with deposition of levees in some slope segments and erosion of

a conduit in other segments. Channel relief and flow confinement increase progressively

during subsequent flows. This morphodynamic evolution determines the architecture of

submarine channel deposits in the stratigraphic record and efficiency of sediment bypass to

the basin floor.
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E
xtensive channelized seascapes have been revealed by
seafloor surveys1–4. The channels are characterized by a
continuous thalweg along which sediment-laden turbidity

flows dominantly bypass sediment5. Submarine channels can
be up to several kilometres wide and hundreds of kilometres long,
and provide the transport pathways for large quantities of
sediment, nutrients and carbon into the deeps of the world’s
ocean1,6, where the material is collected in basin-floor fans that
form the largest sediment accumulations on the planet.

Seafloor and outcrop evidence demonstrates that channels are
associated with erosion into underlying deposits7 and aggradation
of deposits in levees, channel fills and splays8. Fundamentally,
different causalities have been suggested in the spatial and
temporal relations between erosive and depositional changes to
the submarine landscape. Some studies9,10 envision an evolution
where ‘only after an initial erosional phase and channel
establishment are turbidity currents able to construct aggrading
levees’9. This contrasts with suggestions that genetically linked
precursor lobe morphologies may form an initial depositional
template for subsequent channel incision8,11–13, and that
channels may be entirely depositional both outside and inside
the confining conduit7,14.

Subsurface and outcrop observations on channel morphology
and channel deposits are static. Similarly, the presently available
direct observations of active submarine channels4,15–18 do not
span enough time to study morphodynamics of channel inception
and evolution. In recent times, the extension of a submarine
channel has been monitored in a quickly evolving system19.
However, the data set did not provide direct information
about the flow conditions during this morphological evolution.
Therefore, modelling studies remain important in the
investigation of the morphodynamic interplay between channel
form and turbidity currents.

A limited number of experiments successfully produced
subaqueous channels using a saline flow over a mobile sub-
strate20–22. However, these flows could not produce depositional
morphologies, as there was no suspended sediment load, which is
vital for levee formation22. Therefore, these experiments provide
limited insight into contributions of deposition and erosion during
channel inception. Rowland et al.23 reviewed the full range of
published numerical and physical experiments that have tried to
achieve self-channelization24–26 by sediment-laden flows and
concluded that channelization was not achieved in any of the cases.

We present experiments that for the first time capture self-
channelization by turbidity currents. This was achieved by scaling
sediment suspension in the experimental turbidity currents to the
real world systems. This new scaling approach is called Shields
scaling and focuses on two scaling parameters that regulate
sediment suspension: (1) the Shields parameter and (2) a
Reynolds scale of the sediment grains. The observed morphody-
namic channel evolution establishes that channel inception can
either commence with deposition of confining morphology by
turbidity currents or erosion of a channel conduit. Thus, channel
inception is not exclusively possible following erosion.

Results
Scaling approach. Classical turbidity current experiments23,24,27–35

have focused on two non-dimensional scaling characterizations of
the fluid flow: the Froude number (Fr), which is the ratio between
momentum and gravitational forces of the flow, and the Reynolds
number (Re), characterizing the ratio between the momentum and
the viscous forces that determine the turbulent state of the flow.
As it is not possible to keep both Fr and Re equal to the natural
analogues while scaling down flow size, it is common to keep the
Fr similar to natural values and to only require a Re above the

laminar-turbulent threshold36,37. This Froude scaling approach has
proven to be valuable in understanding the flow dynamics of
turbidity currents but it does not guarantee that flows are able to
transport sediment in suspension.

Many Froude-scaled experiments displayed rapid sediment
depletion and were therefore limited in clarifying patterns of
deposition and erosion. Depletive flows rapidly lose their complete
sediment load, because they do not have enough turbulent mixing
to compensate for settling of sediment from suspension. To predict
whether currents are able to entrain and transport sediment in
suspension, it is important to consider the force ratios acting on
the sediment grains. This leads to two additional constraints: the
Shields parameter, being the ratio between the turbulent shear, as
expressed by the shear velocity, and the gravity-induced settling38;
and the particle Re, which is the ratio of grain size to the boundary
layer thickness39. The former is more commonly quoted in
turbidity current studies29 as the ratio between the shear velocity
(u*) and the settling velocity (us), but is here expressed as the
Shields parameter. The latter is a Reynolds scale with significance
for particle suspension near the bed. It describes the roughness of
the sediment surface, which determines whether flow at the
boundary is smooth and dominated by viscous forces, or rough
and dominated by turbulent forces and shedding of turbulent
eddies from particles at the bed surface40. If the boundary is
smooth, a thin layer of laminar flow protects the bed and grains
that settle into this near-bed boundary layer will no longer interact
with suspending turbulent structures and are likely to remain
deposited. In the transitionally rough regime, there is interaction of
turbulent eddies with the bed but viscous forces also have a
significant role. As experiments on channel inception are
dependent on realistic turbulence–sediment interactions, both in
the boundary layer and in suspension, it follows that such Shields
scaling constrains must be satisfied.

The Shields scaling approach mirrors Froude scaling of the
flow dynamics in the sense that one scale, namely the ratio of
turbulent forces and gravity forces acting on the particle
(the Shields parameter), is kept equal to real world values,
whereas the other scale (the Reynolds particle scale) is relaxed, as
long as rough to transitionally rough boundary layer conditions
are maintained, to keep a realistic turbulent near-bed regime
and aid sediment pick-up into suspension. These two scales
form the axes of the classic Shields mobility diagram (Fig. 1),
which enables a comparison between the present experiments,
natural turbidity current conditions and previous experimental
studies.

Comparison with natural currents and previous experiments.
In situ measurements of turbidity currents in the Monterey
Canyon15,16 are used to estimate the position of a representative
natural turbidity current on the Shields diagram (Supplementary
Table 1 and Methods). The flows had a transitionally rough
boundary and the Shields parameter plots above the suspension
threshold (Fig. 1). Similarly, the boundary layer was transitionally
rough in the present experiments and shear stresses were
sufficiently high to support sustained suspension transport.
As a result, these currents were sediment-bypass dominated
along a significant part of the experimental domain. The
experiments presented in this study were performed under
Shields scaling conditions that are representative for the natural
environment. Some previous confined slope experiments24,41 also
plot in the natural turbidity current regime. The experiments
presented here are, however, the first to satisfy both Froude and
Shields scaling (Fig. 1) on an unconfined and erodible slope,
making them suitable to study flow–substrate interactions during
channel inception.
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It emerges that many previous studies violated the proposed
Shields scaling requirements, because the flows had smooth
boundary layers and/or had shear stresses that were below the
threshold for initiation of suspension. In the cases where flows
had a smooth boundary layer and low Shields parameter28,30,32,34,
flows were always depositional. Flows in other experiments29,31,33

had a higher Shields parameter but still a smooth boundary layer.
Finally, the experiments of Rowland et al.23 fulfilled the
roughness requirement; however, there the Shields parameter
was only approximately equal to the critical value for initiation of
bedload motion (Fig. 1). None of these experiments led to
channelization morphodynamics.

Morphological evolution. Three turbidity currents with the same
characteristics were released successively on a constant and
initially featureless sand slope (boundary conditions in Table 1
and set-up shown in Supplementary Fig. 1). The first turbidity
current deposited two sub-parallel ridges, while the flow largely
bypassed in between the two ridges (Fig. 2). This pattern of
deposition resulted in a morphology that confined the subsequent
flows. The relief of this confinement was increased during the
subsequent second and third run due to continued deposition on
the ridges. A circular scour with a diameter of 70 cm and a final
depth of 8 cm is created in between the levees on the upper slope
domain throughout the three runs. This contributes to the
channel relief in that reach. On the lower slope, erosion in
between the ridges was only initiated during the second run.
The ridges are built of layers deposited by successive turbidity
currents that are thinning away from the channel axis and
therefore the ridges can be qualified as levees42.

The cross-sectional geometry of the experimental channel
compares well with submarine channels on the modern seafloor
that have remained unfilled. The depth:width ratio of the Lucia
Chica channel (Fig. 3) is 1:12, whereas the aspect ratio formed in
the experiment varies between 1:9 and 1:23.

The amount of sediment bypass on the slope increases in each
run as is indicated by an increasing fraction of the sediment
reaching the base of slope. The fraction of sediment that reaches
the base of slope increases from 66% in run 1 to 80% in run 3
(Fig. 4).

Evolution of the flow field. The effect of the evolving topography
on the flow field is shown by velocity profiles along a
slope-perpendicular section (Fig. 5a and Supplementary
Figs 2–4). At the beginning of run 1, when the slope was not
yet modified, there was little across-flow variation in the
downstream velocity profile. The confining morphology estab-
lished by the end of run 1 resulted in an increase in flow velocity
inside the confinement (Umax increases from 0.83 to 1.00m s� 1

at velocity profile 1; height of Umax was 1.2 cm) and a decrease in
flow velocity outside of the confinement (Umax decreases from
0.64 to 0.38m s� 1 at velocity profile 3). It is noteworthy that the
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Figure 1 | Regime diagram for sediment transport. Shields mobility diagram giving an overview of experimental conditions in previous

studies22–24,28–32,34,35,41,48, natural flows15 and the experiments presented in this study. Regime boundaries based on refs 38,40,49–51.

Table 1 | Boundary conditions of the experiments.

Input sediment concentration 17% vol
Suspension discharge 30m3 h� 1

Median grain size 141mm
Bed slope 11�
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change in the flow field during run 1 was caused by a channel
with a depth (hUmax¼ 2.6 cm) that was only a fraction of the flow
height (h¼ 7.3 cm). The increase in channel depth during runs 2
and 3 does not result in a systematic change in flow velocity at
any of the profiling locations. These results confirm previous pre-
fixed channel experiments28, which showed that a flow is already

effectively confined within a conduit once the channel depth is
greater than the height of the velocity maximum.

The spatial and temporal variations in flow velocity affected the
ability of the flows to transport their sediment and these changes
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Figure 2 | Maps of deposition and erosion. (a) Digital elevation models of the deposits formed by sandy turbidity currents. Colours indicate the thickness
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current deposits. Compare this figure with the cross-sections of the

experimental deposits in Fig. 2b. The blue line indicates the top of the

hemipelagic drape (figure reprinted with permission from the publisher).
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can be tracked within the Shields diagram (Fig. 1). The flow along
the centreline of the slope (Fig. 5a, velocity profile 1) has a
transitionally rough boundary layer and is able to bypass/erode
sediment until the base of the slope. Flow at the off-axis
locations of velocity profile 2 and 3 plot near the boundary
between smooth and transitionally rough flow during run 1. The
position of these points shifts towards the hydraulically smooth
regime and below the suspension initiation threshold during run
3. Thus, the conditions at the locations of velocity profiles 2 and 3
are at or below the conditions for sediment bypass, and thus there
is continuous deposition at these localities. The flow furthest away
from the axis (Fig. 5a, velocity profile 4) plots within the field
where flows have a smooth boundary layer and are below the
boundary for suspended sediment transport during all runs. This
indicates that flows that carry suspended load are highly depletive
in these realms.

The temporal increase in axial flow velocity, which is caused by
the progressively increasing confinement, causes an increase in
the Shields parameter (Fig. 1, profile 1). The resulting small shift
on the Shields diagram of the position of the flow at profile 1
appears to have little effect on the ability of the flow to transport
sediment at this locality, because little deposition or erosion is
observed here throughout the three runs. Although axial flow
velocity was not monitored in the lower channel section, a larger
shift on the Shields diagram can be inferred there because of the
observed transition from deposition on the channel floor during
run 1 to erosion on the channel floor during run 2 and 3 (Fig. 2b,
cross-section iii.). The axial erosion is a further contributor to
flow confinement in a dynamic feedback and consequently
increases the rates of erosion.

In contrast, the flow conditions at the off-axis locations
(velocity profiles 2, 3 and 4) are shifting in the Shields mobility
diagram towards positions below the suspension initiation
threshold and indeed there is continuous deposition at these
localities.

In summary, spatial and temporal variation in the ability to
transport sediment is predicted from the velocity measurements.
The relative positions and temporal evolution on the
Shields diagram predict the deposition of levees alongside a
fairway dominated by sediment bypass and reflects progressive
confinement increase during channel inception (Fig. 5b).

Discussion
Significant debate has surrounded the nature of the relief that is
created during the initial phase of channel formation. It has been
argued that initial relief that turbidity currents create at a site of
repeated activity is likely erosional9,10, which implies that levees
commonly form from overspill after formation of an entrenched
channel confinement. Trains of erosional scours are widely
observed on the floors of channels on the modern ocean
floor3,4,9,42–44 and are indeed a probable initial feature of
channelization in many cases. Similarly, the scour in front of
the outlet in the present experiments contributes to the initial
confinement on the upper slope. However, the initial confinement
along the middle and lower slope is created purely by depositional
patterns arising from low deposition rates below the flow axis
compared with the flow margins. Thus, the incipient levees
formed by lateral variations in sediment transport processes and
not by overspill from an already established channel. This
morphodynamic development confirms the role that depositional
templates may play in initial confinement8,11,12, and the
experimental deposit cross-sections are strongly reminiscent of
classic observational suggestions of depositional channel
architecture7,45.

Channel axis erosion caused by initial depositional confine-
ment represents transition from depositional channelization to
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(a) Topographic profiles with time-averaged velocity profiles measured

along the same transect at different time intervals (early run 1 (5–25 s), late

run 1 (90–110 s), middle run 2 (44–54 s) and middle run 3 (44–54 s)). The

full velocity time series are supplied in Supplementary Note 3. It is

noteworthy that there is three times vertical exaggeration in the

topographic profiles. (b) Model for the co-evolution of the flow field and the

topography derived from the experiments: (i) broad and weakly confined

flows build a subtle depositional confinement, because deposition rates are

slightly lower in the axis. (ii) A threshold at which incision start is reached,

causing a rapid increase in the confinement relief. It is noteworthy that the

erosion of the channel floor was only observed downstream of the location

of velocity profile 1.
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erosional channelization (Fig. 5b). This is a confirmation of a
‘channelization threshold’ at which a subtle confinement created
by small depositional gradients causes incision, followed by a
channelization feedback11. It emerges that channelization of
turbidity currents can arise from both depositional and erosive
sculpting of the seafloor, and may transition from depositional to
erosive confinement. These flows thus have various intrinsic
tendencies for channelization, which explains the ubiquitous
presence of channels on submarine slopes.

The channel inception debate is just one of the many aspects of
seafloor morphodynamics that can now be subjected to
thorough testing in the laboratory environment. Previously,
this was not possible, because experimental turbidity currents
did not show realistic patterns of deposition and erosion
as a result of inadequate scaling of the suspended sediment
transport.

We conclude that confinement can progressively evolve from a
depositional or erosional template, promoting gradual enhance-
ment of sediment bypass on the slope. The increase in sediment
bypass during the early phase of channel evolution will result in
autogenic progradation of the system and deposits with according
stacking patterns. Coarse-grained deposits can be expected at the
base of finer-grained levees; such coupled stratigraphic bodies can
be explained with a single genetic sequence of progressive channel
inception, without the need to invoke changes in external
mechanisms.

Methods
Description of the set-up. The experiments were conducted in the Eurotank
Flume Laboratory at Utrecht University. The Eurotank measures 6� 11m in
planform and was filled with water up to a level of 1.2m above the horizontal floor
(Supplementary Fig. 1). The bathymetry at the bottom of the tank consisted of a
slope of 11� and a horizontal basin floor at the base of this slope. The slope was
covered with a 10-cm-thick layer of loose sand that had the same grain-size dis-
tribution as the turbidity currents. A wooden duct was present at the top of the
slope, to resemble a non-erodible canyon setting at the top of the slope. At the
other end of the slope, a 10-cm-high ridge was placed, to provide down-dip
accommodation for the sediment that reached the base of the slope.

Sediment suspensions. Before each experiment, the sediment mixture was
prepared outside the tank in a 1.1-m3 mixing tank, with two propellers designed
to homogenize sediment–water mixtures up to 30% volumetric sediment
concentrations. The quartz sand used to make the suspensions had a median grain
size (D50) of 141mm, a D10 of 44mm and a D90 of 199 mm (Supplementary Fig. 5),
and had a specific density of 2,650 kgm� 3. The grain size was analysed using a
Malvern Mastersizer particle sizer.

Data collection. During the experiments, a slurry pump was used to supply the
suspension to the set-up. A discharge meter (Krohne Optiflux 2300) was mounted
in the supply pipe. The discharge was regulated by a Labview control system that
adjusted the pump speed whenever the measured discharge deviated from a set
reference value. The discharge during each of the experiments presented here was
30m3 h� 1. The experiments lasted B100 s before the mixing tank was drained.
Four Ultrasonic Doppler Velocity Profiler probes (UVP Duo MX, 1MHz) were
installed on an aluminium frame, to monitor the flow field during the experiments.
These probes were set up at around 0.15m above the erodible basin floor, with
their beam pointing diagonally down into the flow at an angle of 60� relative to the
initial local slope of the flume floor. The planview location of the probes is indi-
cated in Fig. 2. Each of these probes measured a full profile of bed-parallel flow in
the direction of the probe orientation. The profiles had a spatial resolution of
0.64mm and the measurement frequency was 1.81Hz. Individual velocity profiles
have a spiky appearance due to the turbulent nature of the flows. Therefore, time-
averaging was applied to create smoother profiles as presented in Fig. 5a. After each
experimental run, the basin was drained to expose the deposit. Next, a digital
elevation model (DEM) with a horizontal resolution of 2� 2mm was created using
a laser scanner. By subtracting the DEM of the experimental deposits and a DEM
of the sediment bed before the experiments, a map of deposition and erosion was
created for each experiment.

Determination of flow conditions. The following flow parameters were required
to determine the position of each reviewed experiment on the Shields diagram
(Fig. 1):

Grain size (d): Here, the median grain size of the initial sediment mixture was
used.

Kinematic viscosity (v): Here, the viscosity of clear water at 20� was used
(1� 10� 6).

Shear velocity (U*): When estimates are supplied in experimental studies, then
they are followed. Elsewise, the shear velocities were determined as46 U� ¼

ffiffiffiffiffiffiffiffiffi
g 0hS

p
.

For the present experiments, the shear velocity was determined using39:

U� ¼ Umaxk ln
hmax

0:1D90

� �� �� 1

where hmax is the height of the velocity maximum and Umax is the maximum
velocity.

Reduced gravity (g0): g(Dr/r), where r is the density of the suspension and Dr
is the excess density of the sediment submerged in the ambient fluid. To calculate
the density of the suspension, it is assumed that the density of the sediment
concentration is equal to the concentration of the initial mix.

Flow height up to the velocity maximum (h): If only the total flow thickness was
given, it was assumed that the height of the velocity maximum is at one-fourth of
the total flow thickness.

Bed slope (S): sin(bed slope in degrees).
Flow conditions for turbidity currents in the Monterey canyon were determined

using information reported in ref. 15. A representative median grain size for the
turbidity currents was estimated from sediment cores of the Monterey canyon
floor. Core data in ref. 47 shows that a broad range of grain sizes (ranging from silt
to boulders) were deposited on the canyon floor. Middle sand (diameter of 350 mm)
was chosen as a representative grain size, because it was the most common grain
size in the cores. The D90 was estimated at 500mm. The shear velocity was
determined using the formula that is also used for this purpose for the present
experiments.
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